

AL HAJAR

39th EDITION | July, 2025

Contents:

01

**“Folded Cleavage
Planes in Wadi Al-Ar-
beieen near Firq (sheet
Quryat) Wilfried Bauer
and Abdulrahman Al
Barashdi”**

German University of
Technology in Oman

02

**Mesoarchean tidal
deposits from the West-
ern Iron Ore Group of
rocks, Singhbhum
Craton, India**

Sami Salim Ali Al-Khamisi,
Sabyasachi Mandal,
Rajat Mazumder and
Wilfried Bauer

03

**A short note on the
procedures adopted for
the preservation and
conservation of Lower
Gondwana Beds of
Mandakpal,
Pulwama Kashmir by
the Department of
Geology and Mining
JK(UT) India.**

*Mohsin Noor , Fayaz A. Bhat
and Khursheed A. Mir

04

Interview with Professor
“Victoria Pease”

06

Disclaimer

The information contained in this Newsletter is not, nor is it held out to be, a solicitation of any person to take any form of investment decision. The content of the GSO Newsletter does not constitute advice or a recommendation by GSO and should not be relied upon in making (or refraining from making) any decision relating to investments or any other matters. Although the GSO does not intend to publish or circulate any article, advertisement or leaflet containing inaccurate or misleading information, the Society cannot accept responsibility for information contained in the Newsletter or any accompanying leaflets that are published and distributed in good faith by the GSO. Items contained in this Newsletter are contributed by individuals and organizations and do not necessarily express the opinions of the GSO, unless explicitly indicated. The GSO does not accept responsibility for items, articles or any information contained in or distributed with the Newsletter. Under no circumstances shall GSO be liable for any damages whatsoever, including, without limitation, direct, special, indirect, consequential, or incidental damages, or damages for lost profits, loss of revenue, or loss of use, arising out of or related to the Newsletter or the information contained in it, whether such damages arise in contract, negligence, tort, under statute, in equity, at law or otherwise. The Editors reserve the right to reject, revise and change text editorially. ©All 2023 copyrights are reserved to The Geological Society of Oman. No reproduction, copying or transmission of this publication may be made by any means possible, current or future, without written permission of the President, Geological Society of Oman. No paragraph of this publication may be reproduced, copied or transmitted unless with written permission or in accordance with international copyright law or under the terms of any licence permitting limited copying issued by a legitimate Copyright Licensing Agency. All effort has been made to trace copyright holders of material in this publication, if any rights have been omitted the Geological Society of Oman offers its apologies.

18

26

37

About GSO

The Geological Society of Oman (GSO) was established in April 2001 as a vocational non-profit organization which aims to advance the geological sciences in Oman, the development of its members and to promote Oman's unique geological heritage.

Follow us in GSO social media

 Gso_oman

 GsoOman

 Gsooman

 www.gso-oman.org

 Geological Society of Oman

 00968-92431177

● This issue of Al Hajar is sponsored by:

Dear Readers,

It is our great pleasure to welcome you to this edition of AL Hajar, the premier publication of the Geological Society of Oman (GSO). As always, our aim is to bring you insightful articles, groundbreaking research, and fascinating stories that highlight the rich geological heritage of Oman and beyond.

In this issue, we take you on a journey through Oman's unique geology, beginning with a fascinating exploration of the Folded Cleavage Planes in Wadi Al-Arbeieen near Firq (sheet Quryat).

Our international focus includes a comprehensive look at the Mesoarchean tidal deposits from the Western Iron Ore Group of rocks, Singhbhum Craton, India, as well as a detailed note on the preservation and conservation of Lower Gondwana Beds of Mandakpal, Pulwama Kashmir by the Department of Geology and Mining, JK (UT) India.

Additionally, we are thrilled to bring you an exclusive interview with a leading expert in the field, Professor Victoria Pease.

We extend our gratitude to our contributors and readers for their unwavering support. Your enthusiasm and engagement are what drive us to continually strive for excellence. Thank you for being a part of this journey. We hope you enjoy reading this edition as much as we enjoyed creating it.

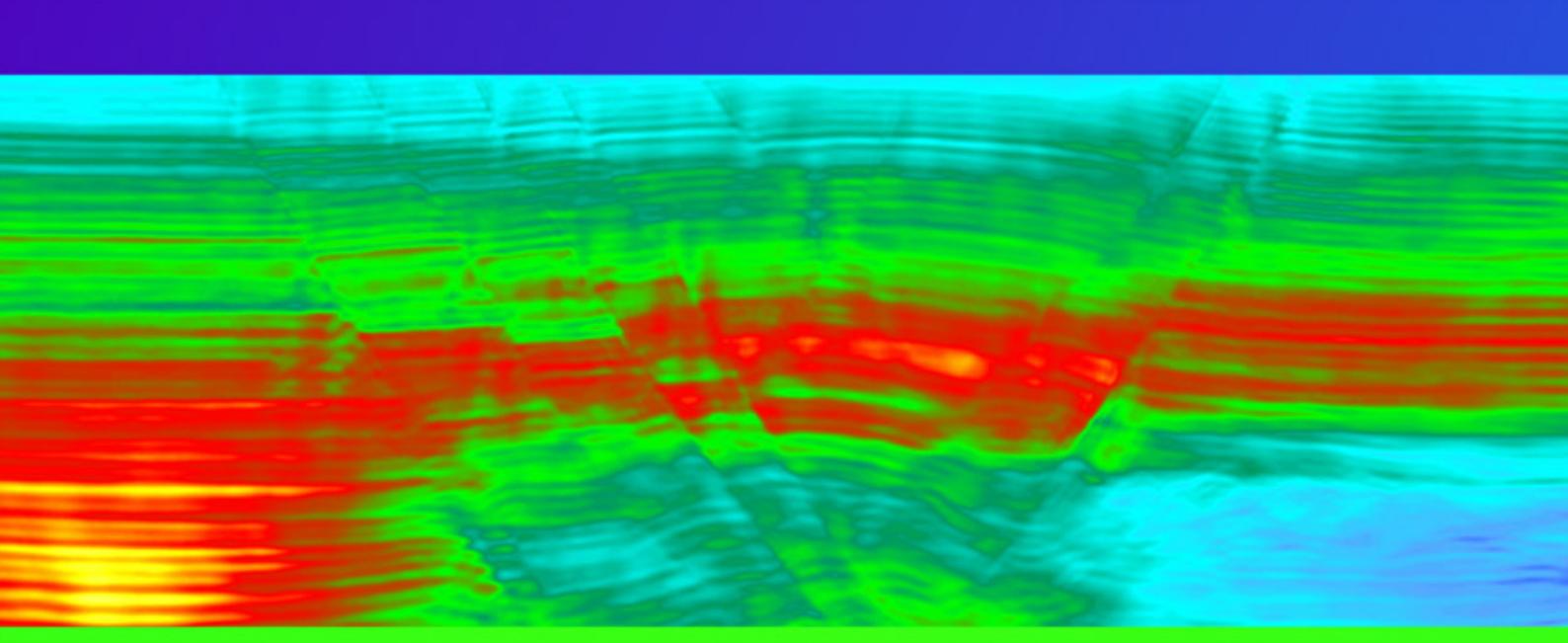
Warm regards,

Laila AL Zeidi
GSO Content Editor

AL Hajar Editorial Team

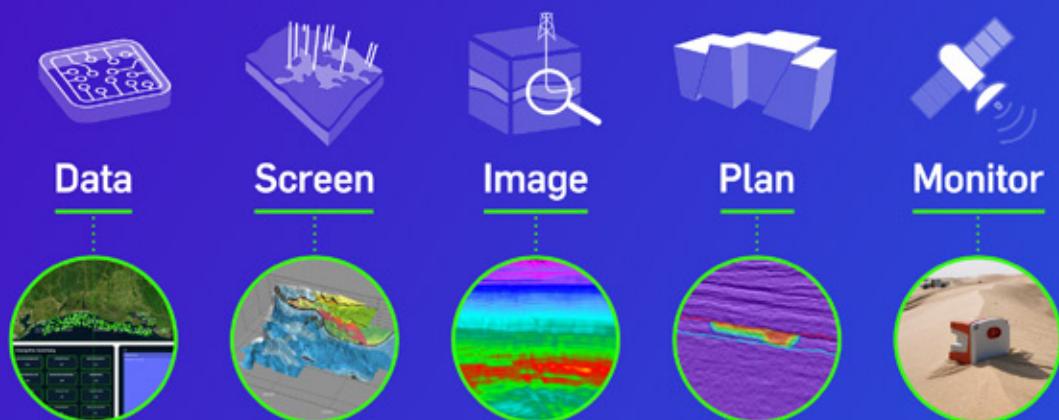
EDITOR IN CHIEF: Laila AL Zeidi,

ARTICLES REVIEWER: Todd Woodford (Viridien Group)


Designing by: ALKAYAN ALNADER

ON THE COVER:

Photo by: Qasim AL Farsi


Instagram: @qasim.alfarsi

Location: Jabal AL Sarah, Ibri, Oman

CARBON STORAGE & MONITORING EXPERTS

Identify, de-risk, and monitor carbon sequestration sites with a unique portfolio of geoscience expertise

Folded Cleavage Planes in Wadi Al-Arbeieen near Firq (sheet Quryat)

Wilfried Bauer and Abdulrahman Al Barashdi

German University of Technology in Oman (GUtech), PO Box 1816, 130 Athaibah, Muscat

Introduction

Folded cleavage planes are relatively common in fold-and-thrust belts. As deformation increases, the axial-parallel cleavage in fine-grained rocks will begin to fold once the cleavage planes reach a low angle relative to the principal stress axis. This often results in the formation of cleavage crenulations, which are commonly observed in greenschist-facies rocks with a high content of phyllosilicates. However, tightly folded cleavage planes are less common in low-grade metamorphic rocks. The folding and cleavage formation often occur contemporaneously with the peak stress, while subsequent phases of deformation may lead to brittle or brittle-ductile structures, such as faults or kink bands. A review of the literature on Google Scholar identified only 16 papers describing folded cleavage planes at the macroscopic scale, from locations including the Pyrenees, Zambia, Alexander Island (Antarctica), and various sites in the USA.

In the winter of 2019/20, the late Prof. Janos Urai informed us of an outcrop in Wadi Al-Arbeieen, south of Quryat, exhibiting folded cleavage. A detailed structural analysis of the outcrop and its surroundings in January/February 2021 provided the material for this article.

Field observations

The outcrop is located in Wadi Al-Arbeieen, about 19 km SSW of Quryat at N 23°03'28.7", E 58°58'58.1" (Fig. 1). It is a natural outcrop with a length of c. 70 m immediately east of the road through Wadi Al-Arbeieen.

Figure 1. Outcrop with folded cleavage planes (Wadi Al-Arbeieen), view to the NNE.

Stratigraphically, the exposed rocks consist of thinly bedded limestones, ranging from 2 to 5 cm in thickness, alternating with beige calcareous siltstones (Fig. 2).

Figure 2. Detail of the outcrop. Traces of bedding planes are visible as fine lines to the right of the GPS.

This sequence is about 30-40 m thick and was mapped as uppermost Permian Saiq 3 (Le Métour et al. 1986). It is squeezed between the underlying 250 m nodular limestones and dolomites of the lower Saiq Formation and 700-800 m massive dolomites of the Mahil Formation (Fig. 3).

Figure 3. Well bedded dolomites of the Triassic Mahil Formation, Wadi Al-Arbeieen, view to the north.

The finely layered, relatively thin Saiq 2 and 3 beds are the weakest components within more than 1000 m thick beds of Permo-Triassic dolomites and limestones, and they are strongly deformed.

Analysis of tectonic elements

The cleavage planes exhibit a regular spacing of approximately 3-4 cm (Fig. 1). These planes are folded with interlimb angles between 90 and 70° (open folds), wavelengths around 25 cm and amplitudes of 10-15 cm. The fold axes are subhorizontal and the hinge zones are narrow, classifying the folds as upright chevron folds.

The poles of the cleavage planes plot on a great circle with a pole at 255/04 (Fig. 4).

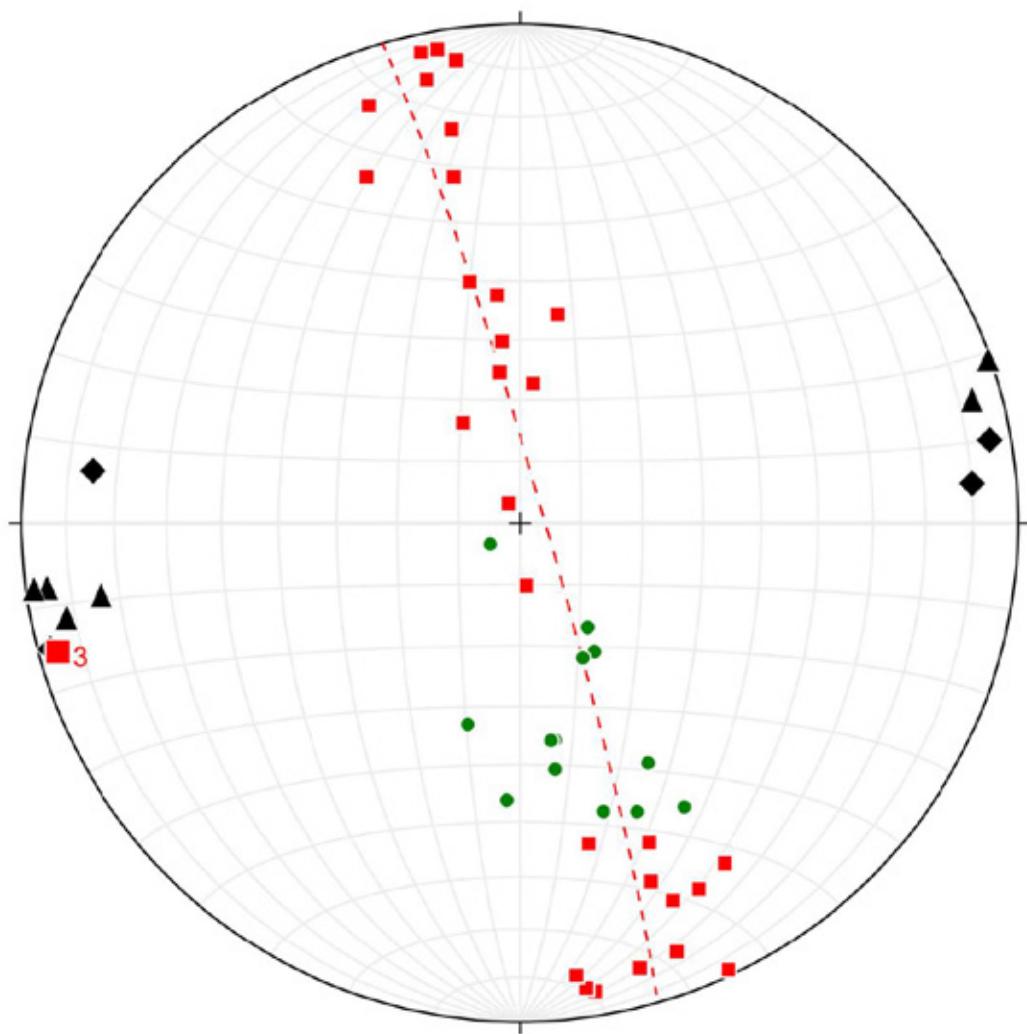


Figure 4. Structural elements plotted in a Stereonet, lower hemisphere. Red squares: poles to the cleavage; green circles: poles to the bedding; red dashed great circle: cylindrical best fit to the poles of cleavage; black triangles: fold axes; black diamonds: intersection lineations between bedding and cleavage; 3: 3rd Eigenvector=pole to great circle.

This pole is close to the fold axes and intersection lineations which both are oriented WSW-ENE. The bedding dips gently to steeply in northern to northwestern directions. The folding of the cleavage is attributed to a \approx N-S compression, which may correspond to the 'Tectonic Stage 3' described by Fournier et al. (2006). This compression phase began at the Oligocene/Miocene boundary with an E- to NE-directed compression that later rotated during the Pliocene to a N-S and NNE-SSW orientation. This compression is also observed in the Eocene Rusayl Formation near Al-Khoud village, as documented by Scharf et al. (2016). Given the competence contrast between the massive Saiq 1 and Mahil dolomites and the thinly bedded Saiq 2 and 3, the folded cleavage likely represents a strain partitioning, located in the least competent parts of the Permo-Triassic, during the Arabia-Eurasia convergence in the Pliocene. A systematic analysis of similar late Cenozoic deformation features like kink bands in the uppermost Amdeh Formation and the Hatat schists is still outstanding.

References

Fournier, M., Lepvrier, C., Razin, P. and Jolivet, L. (2006) Late Cretaceous to Paleogene Post-obduction extension and subsequent Neogene compression in Oman Mountains. *GeoArabia* 4, 17-40.

Le Métour, J., Villey, M. and de Gramont, X. (1986). Geological map of Quryat, sheet NF40-4D, Scale 1:100,000 with explanatory notes. BRGM, Orleans.

Scharf, A., Mattern, F. and Al Sadi, S. (2016) Kinematics of postobduction deformation of the Tertiary Ridge at Al-Khod Village (Muscat Area, Oman). *Sultan Qaboos University Journal for Science* 21, 26–40.

Mesoarchean tidal deposits from the Western Iron Ore Group of rocks, Singhbhum Craton, India

Sami Salim Ali Al-Khamisi^{1,2}, Sabyasachi Mandal³, Rajat Mazumder¹ and Wilfried Bauer¹

1. Department of Applied Geosciences, German University of Technology in Oman, PO Box 1816, PC 130 Athaiba, Oman

2. Oil & Gas Research Centre, Sultan Qaboos University, Muscat 123 Al-Khod, Oman

3. Birbal Sahni Institute of Paleosciences, 53, University Road, Lucknow, Uttar Pradesh 226007, India

INTRODUCTION

Laterally and/or vertically accreted, laminated to thinly bedded medium- to fine-grained sandstone, siltstone and mudstone that are produced by tidal activity are known as tidal rhythmites (Williams, 1991, Kvale et al., 1999; Kvale, 2003; Mazumder and Arima, 2005). Such rocks bear a record of astronomically induced tides. In the absence of fossils, such rocks are unambiguous evidence of marine sedimentation (Mazumder and Arima, 2005 and references therein). Therefore, recognition of tidally influenced sedimentary deposits in Precambrian successions is extremely important for interpreting depositional sedimentary environments (Eriksson and Simpson, 2000, 2004; Williams, 2000; Mazumder and Chaudhuri, 2021; Heubeck et al., 2022). The Applied Geosciences Department of the German University of Technology in Oman has an ongoing research project (BF 2023) on Mesoarchean sedimentary deposits of the western Singhbhum Craton, funded by The Research Council (TRC) of Oman. Faculty members and students are working to infer depositional environments through research collaboration with the Birbal Sahni Institute of Paleosciences. This research communication reports on a recently identified well-preserved Mesoarchean tidal deposit from the western part of the Singhbhum Craton, near the city of Rourkela, India (Fig. 1A-B).

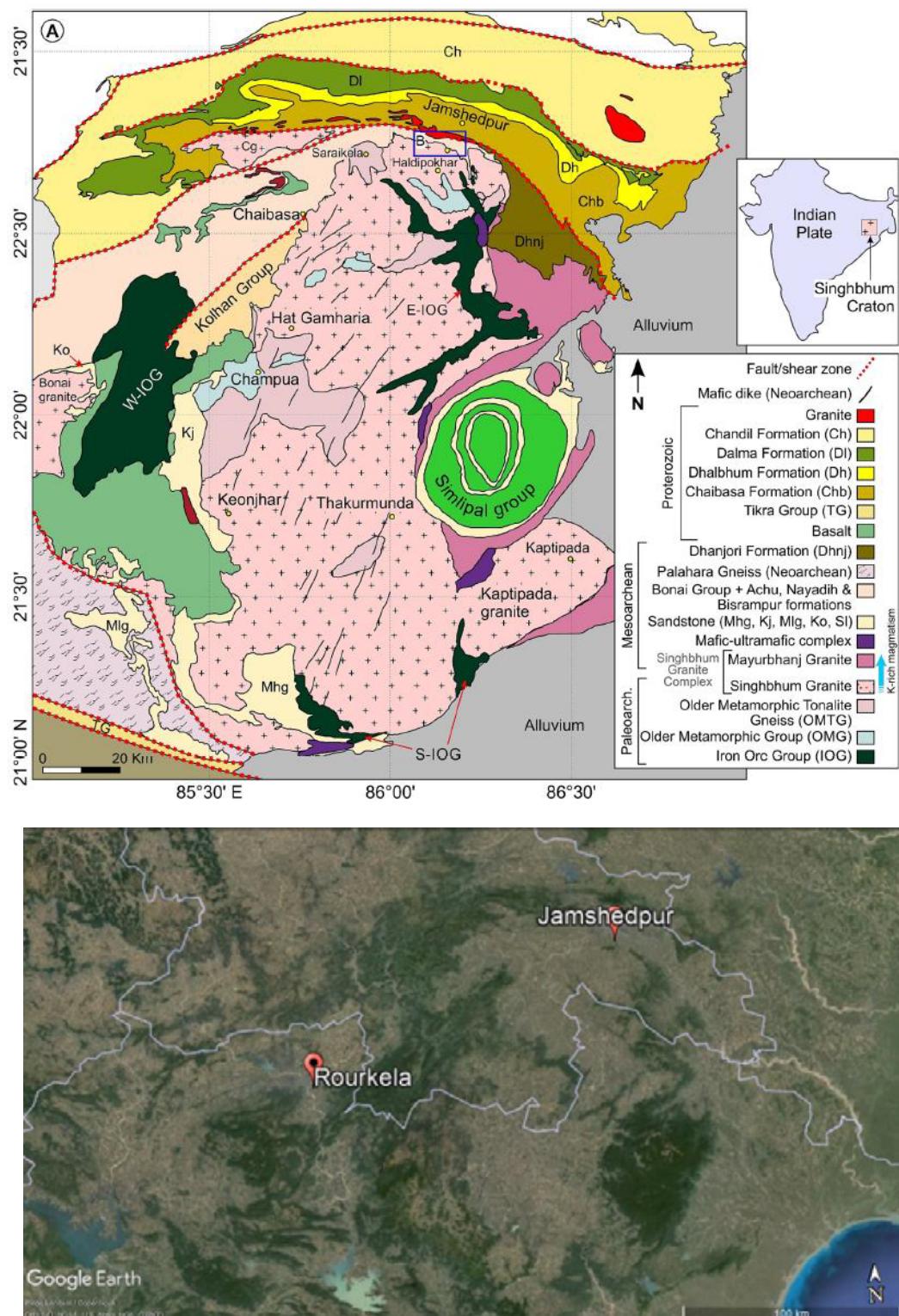


Figure 1: Maps: (A) Simplified geological map of Singhbhum Craton (modified after Saha, 1994, Olierook et al., 2019, and Yoleikhai et al., 2023). (B) Google Earth image showing the location of Rourkela.

GEOLOGICAL BACKGROUND

The Singhbhum Cratonic block is among one of the five Indian Cratonic blocks that bear a geological record from 3500 to 900 million years ago (Paleoarchean to Neoproterozoic; Fig. 1A; Mazumder et al., 2012; Chaudhuri, 2020; Mukhopadhyay and Matin, 2020 and references therein). The Tonalite-Trondhjemite-Granodiorite (TTG) (known as Older Metamorphic Tonalitic Gneiss (OMTG) dating to 3400 Ma on average, Chaudhuri et al., 2018) form the basement of deposition of the Iron Ore Group (IOG) and the Older Metamorphic Group (OMG) of rocks. The IOGs are exposed along three different belts—eastern, western, and southern—referred to as EIOG, WIOG, and SIOG respectively (Fig. 1A). The banded iron formation (BIF) is one of the most important lithologies of the three IOG successions (Saha, 1994; Mukhopadhyay, 2001; Mukhopadhyay et al., 2008; Mazumder et al., 2012). In addition, the IOG successions consist of quartzites, schists, phyllites, ultramafic (komatiitic), mafic (basalts) and rhyolitic volcanics and volcaniclastics.

While the IOG rocks indicate low-grade (upper greenschist facies) metamorphism, the OMG successions indicate relatively higher-grade (amphibolite facies) metamorphism (quartzites, schists, metamorphosed BIF; see Saha, 1994; Mukhopadhyay, 2001; Hofmann and Mazumder, 2015). During the Paleoarchean (3300 Ma), the Singhbhum granitoid batholith intruded the metasedimentary successions (Nelson et al., 2014; Upadhyay et al. 2014; Olieroor et al., 2019; Chaudhuri, 2020; Chaudhuri et al., 2022). The IOG rock successions suffered multiple phases of deformation; the intensity of deformation is more in the EIOG compared to the WIOG belt (Saha, 1994). Interested readers may consult Mukhopadhyay et al. (2008), (2012), Mazumder et al. (2012), (2022), Mukhopadhyay and Matin (2020), Mazumder and Bauer (2020), Mazumder and Choudhuri (2021) for a review of IOG successions.

The WIOG sedimentary succession is bound by two thick mafic lava sequences (known as lower and upper lava respectively, Beukes et al., 2008; Wright and Basu, 2024). Wright and Basu, (2024) reported a Sm-Nd isochron age of around 3400 million years from the lower lava sequence and an age of about 3300 million years from a dacitic tuff horizon below the BIF. The tidal deposits we examined during a recent field trip forms part of the upper WIOG clastic sequence. As per the available geochronological data, the depositional age of these upper WIOG sandstone is around 3000 million years (Hofmann et al., 2022; Gond et al., 2023). Thus, the lower part of the WIOG succession is of Paleoarchean age whereas the upper WIOG sandstones are of Mesoarchean age.

WESTERN IRON ORE GROUP (WIOG)

The WIOG succession has been investigated by a number of authors (Majumdar and Chakraborty, 1977, 1979; Rai et al., 1980; Rao and Dasgupta, 1995; Beukes et al., 2008; Mazumder and Chaudhuri, 2021). Detailed sedimentological facies analysis has been undertaken by Mazumder and Chaudhuri (2021). These authors have subdivided the bottommost part of the WIOG succession (occurring below the banded iron formation) into three distinct facies associations: a lower alluvial fan-fluvial, a middle shallow-marine coastal, and an upper fluvial facies association. The uppermost facies association is overlain by the lower shale facies. Mazumder and Chaudhuri (2021) inferred a terrestrial-shallow-marine depositional environment during the lower IOG sedimentation. The lower shale and the BIF (Fig. 2) were deposited in a relatively deeper shelf setting (Beukes et al., 2008; Mazumder and Chaudhuri, 2021).



Figure 2: Banded Iron Formation of the Western Iron Ore Group succession (pen 11 cm).

Tidal deposits of the upper WIOG succession

The sedimentary succession examined in this study is part of the upper WIOG succession. The greenish mica-rich sandstones (fuchsite quartzite; Fig. 3A-B) are characterized by small-scale asymmetric ripples (Fig. 4A), parallel lamination (Fig. 3A), and herringbone cross-stratification (Fig. 4B). The cross-stratified sandstone foresets are bound by thin mudstone drapes. The parallel laminated sandstones also exhibit thin mudstone drapes (Fig. 4B). The oppositely oriented cross-stratification and sandstone-mudstone alternation clearly indicate tidal influence (Eriksson and Simpson, 2000, 2004; Kvale, 2003; Mazumder and Arima, 2005) and these sandstones are tidal rhythmites (Mazumder and Arima, 2005). The precursor sandstone is moderate to poorly sorted with quartz, rock fragments, and mica (Fig. 3B). Detailed sedimentary facies analysis and petrographic investigation of the upper WIOG succession are under process.

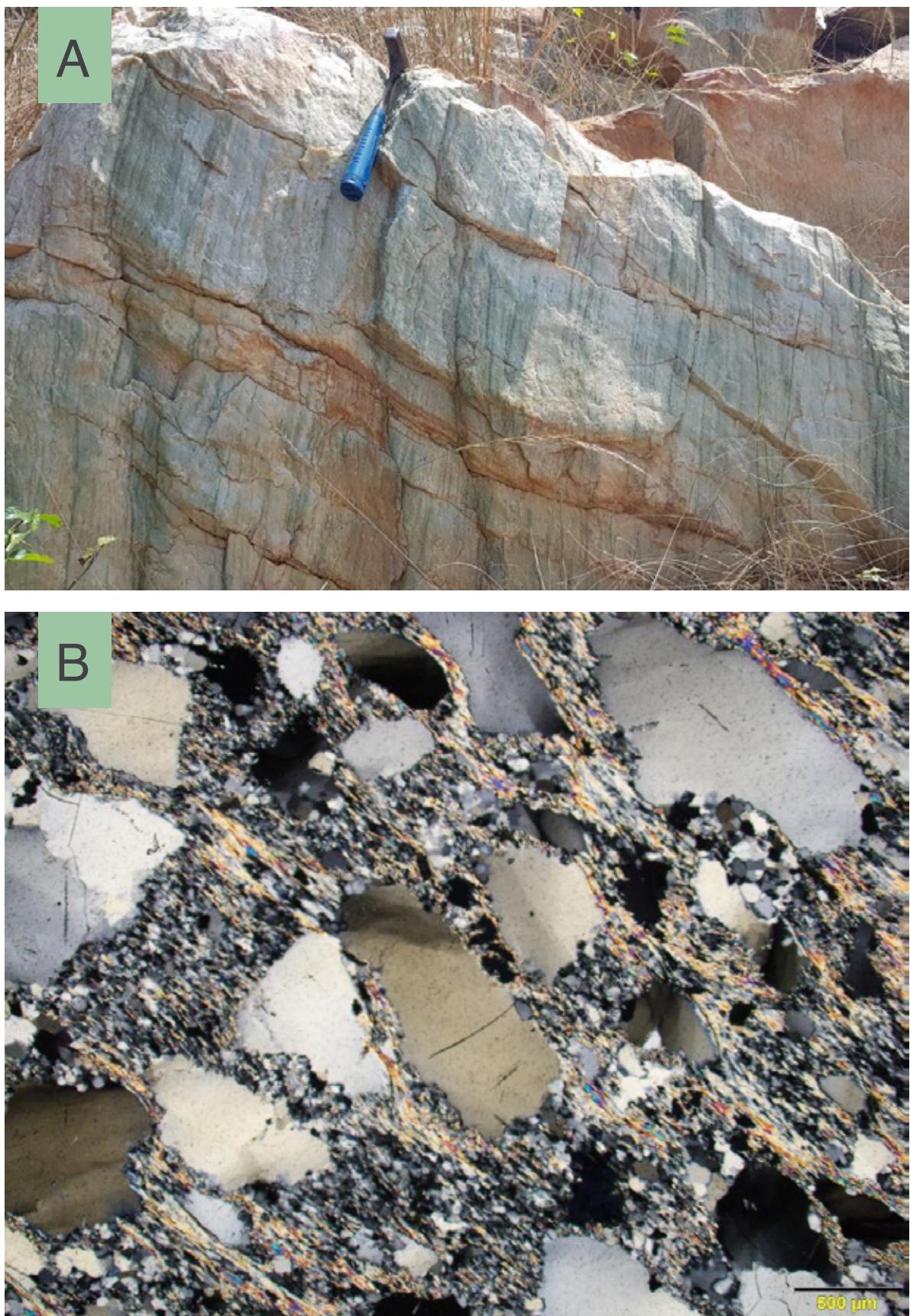


Figure 3: Fuchsite quartzite of the upper Western Iron Ore Group: (A) field photograph showing alternate cross-laminated and plane laminated facies (hammer length 42cm). (B) Photomicrograph of fuchsite quartzite; the precursor sandstone is moderate to poorly sorted with quartz, rock fragments, and mica (scale bar 500 μ m).

Figure 4: Mesoarchean tidal rhythmite (fuchsite quartzite) from upper Western Iron Ore Group succession: (A) Cross-laminated sandstone (precursor lithology). (B) Oppositely oriented cross-stratification (herringbone); foresets are separated by thin mud drapes (Pen length 10 cm).

DISCUSSIONS

Although tide-influenced shallow-marine deposits are known from several cratons (Mazumder and Arima, 2005), the oldest unambiguous tidal rhythmite was reported from the Moodies Group of South Africa (Eriksson and Simpson, 2000; Heubeck et al., 2022). Paleoarchean tidal deposits were previously reported by Mazumder and Chaudhuri (2021) from the lower WIOG succession in the western part of the Singhbhum Craton. Bhattacharjee et al. (2021) reported Mesoarchean tidal deposits from the Simlipal Group occurring in the eastern part of the Singhbhum Craton (Fig. 1A). We have recognized the tidally influenced shallow-marine deposit from the northwestern part of the Singhbhum Craton. Mesoarchean tidal deposits also occur in the southern part of the Singhbhum Craton (Chakrabarti et al., 2021; De, 2021). However, the Archean sedimentary succession occurring to the northern part of the Singhbhum Craton is entirely terrestrial (De et al., 2023). Although Neoarchean (~2700 Ma) tidal deposits are known from the Bababudan Group of the Dharwar Craton (Chadwick et al., 1985; Srinivasan and Ojakangas, 1986; Bhattacharyya et al., 2015), no Neoarchean tidal deposit is hitherto reported from the Singhbhum Craton. This is probably due to high continental freeboard conditions during the Mesoarchean-Neoarchean time in the northern part of the Singhbhum Craton relative to lower sea level conditions (De et al., 2023).

REFERENCES

Beukes, N.J., Mukhopadhyay, J., Gutzmer, J., 2008. Geology and genesis of BIF-hosted high-grade iron ores of the Noamundi basin, eastern India. *Econ. Geol.* 103, 365–386.

Bhattacharjee, S., Mulder, J.A., Roy, S., Chowdhury, P., Cawood, P.A. and Nebel, O., 2021. Unravelling depositional setting, age and provenance of the Simlipal volcano-sedimentary complex, Singhbhum craton: Evidence for Hadean crust and Mesoarchean marginal marine sedimentation. *Precambrian Research*, 354, p.106038. doi: <https://doi.org/10.1016/j.precamres.2020.106038>.

Bhattacharya, H.N., Bhattacharya, B., Pal, S. and Roy, A., 2015. Late Archaean tidalites from western margin of Chitradurga greenstone belt, southern India. *Precambrian Research*, 257, pp.109–113. doi: <https://doi.org/10.1016/j.precamres.2014.11.025>.

Chadwick, B., Ramakrishnan, M. and Viswanatha, M.N., 1985. Bababudan - a late Archaean intracratonic volcano sedimentary basin, Karnataka, southern India, Part I: Stratigraphy and basin development. *Journal of the Geological Society of India*, 26, 769-801.

Chakrabarti, K., Mukhopadhyay, J., Ghosh, G., Bhatt, A.K. and Sinha, D.K., 2021. Transition from alluvial to wave-tide-dominated Meso-Neoarchean shelf sedimentation in the Mankarchua Quartzite, Singhbhum craton, eastern India. *Precambrian Research*, 354, p.106020. doi: <https://doi.org/10.1016/j.precamres.2020.106020>.

Chaudhuri, T., 2020. A review of Hadean to Neoarchean crust generation in the Singhbhum Craton, India and possible connection with Pilbara Craton, Australia: the geochronological perspective. *Earth Sci. Rev.* 202, 103085.

Chaudhuri, T., Kamei, A., Das, M., Mazumder, R. and Owada, M., 2022. Evolution of the Archean felsic crust of Singhbhum Craton, India: A reassessment. *Earth Sci. Rev.* 231 article no. 104067. <https://doi.org/10.1016/j.earscirev.2022.104067>.

Chaudhuri, T., Yusheng, W., Mazumder, R., Mingzhu, M. and Dunyi, L., 2018. Evidence of Enriched, Hadean Mantle Reservoir from 4.2–4.0 Ga zircon xenocrysts from Paleoarchean TTGs of the Singhbhum Craton, Eastern India. *Sci. Rep.* 8. Article number: 7069. <https://www.nature.com/articles/s41598-018-25494-6>.

De, S., 2021. Alluvial fan to shallow marine sedimentation record in the ~3.0 Ga Keonjhar Quartzite, Singhbhum Craton, India: An example of Phanerozoic style passive margin sedimentation from the Mesoarchean. *Precambrian Research* 352, 105962. doi: <https://doi.org/10.1016/j.precamres.2020.105962>.

De, S., Mazumder, R., Chaudhuri, T. and Bauer, W., 2023. Late Paleoarchean to Neoarchean sedimentation on the Singhbhum Craton, eastern India: a synthesis. *Canadian Journal of Earth Sciences* 60 (7), doi: <https://doi.org/10.1139/cjes-2022-0050>.

Eriksson, K.A., Simpson, E.L., 2000 Quantifying the oldest tidal record: the 3.2 Ga Moodies Group, Barberton Greenstone Belt, South Africa. *Geology* 28, 831 – 834.

Eriksson, K.A. and Simpson, E.L., 2004. Precambrian tidalites: recognition and significance. In: Eriksson, P.G., Altermann, W., Nelson, D., Mueller, W., Cateneau, O., Strand, K. (Eds.), *Tempos and Events in Precambrian Time. Developments in Precambrian Geology* 12. Elsevier, Amsterdam, pp. 631 – 642.

Gond, A.K., Dey, S., Zong, K., Liu, Y., Anand, R., Mitra, A. and Mitra, A., 2023. A better understanding of Archean crustal evolution: exploring the sedimentary archive of the Singhbhum Craton, eastern India. *Journal of Asian Earth Sciences* 251, 105630–105630. doi: <https://doi.org/10.1016/j.jseaes.2023.105630>.

Heubeck, C., Bläsing, S., Drabon, N., Eulenfeld, T., Grund, M.U., Homann, M., Janse Van Rensburg, D., Köhler, I., Nabhan, S., Rabethge, C., Voigt, T., Zentner-Joerges, D., 2022. Reassessing evidence of Moon–Earth dynamics from tidal bundles at 3.2 Ga (Moodies Group, Barberton Greenstone Belt, South Africa). *Sedimentology* 69, 2029–2052. doi: <https://doi.org/10.1111/sed.12988>.

Hofmann, A., Jodder, J., Xie, H., Bolhar, R., Whitehouse, M. and Elburg, M., 2022. The Archaean geological history of the Singhbhum Craton, India – a proposal for a consistent framework of craton evolution. *Earth-Science Reviews* 228, p.103994. doi: <https://doi.org/10.1016/j.earscirev.2022.103994>.

Kvale, E.P., 2003. Tides and tidal rhythmites. In: Middleton, G.V. (Ed.), *Encyclopedia of Sediments and Sedimentary Rocks*. Kluwer Academic.

Kvale, E.P., Johnson, H.W., Sonett, C.P., Archer, A.W. and Zawistoski, A., 1999. Calculating lunar retreat rates using tidal rhythmites. *Journal of Sedimentary Research* 69, 1154 – 1168.

Majumder, T. and Chakraborty, K., 1977. Primary sedimentary structures in the banded ironformation of Orissa. *Sediment. Geol.* 19, 287–300.

Majumder, T., Chakraborty, K.L., 1979. Petrography and petrology of the Precambrian banded iron-formation and reformation of the bands. *Sediment. Geol.* 22, 243–266.

Mazumder, R. and Arima, M. 2005. Tidal rhythmites and their implications. *Earth-Science Reviews* 69, 79–95. doi: <https://doi.org/10.1016/j.earscirev.2004.07.004>.

Mazumder, R. and Bauer, W., 2020. Geology of the Paleoarchean eastern iron ore group of rocks, India. *Al Hajar (Geol. Soc. Oman)* 28, 6–13.

Mazumder, R. and Chaudhuri, T., 2021. Paleoarchean terrestrial to shallow marine sedimentation on Singhbhum Craton, eastern India (the Western Iron Ore Group). *Precambrian Res.* 354, 106071. doi: <https://doi.org/10.1016/j.precamres.2020.106071>.

Mazumder, R., Chaudhuri, T., De, S., Bauer, W., Al Hadi, M., Sugitani, K., van Zuilen, M.A., Senda, R., Yamamoto, M., Raju, P.V.S., Ohta, T., Catuneanu, O., Mazumder, S., Saito, S. and Shimooka, K., 2022. Paleoarchean surface processes and volcanism: Insights from the eastern Iron Ore Group, Singhbhum craton, India. *Earth-Science Reviews*, 232, 104122. doi: <https://doi.org/10.1016/j.earscirev.2022.104122>.

Mazumder, R., Van Loon, A.J., Mallik, L., Reddy, S.M., Arima, M., Altermann, W., Eriksson, P.G. and De, S., 2012. Mesoarchaean-Palaeoproterozoic stratigraphic record of the Singhbhum crustal province, eastern India: A synthesis. In: R. Mazumder, Saha, D. (Eds.), *Palaeoproterozoic of India*, *Geol. Soc. Lond. Spec. Publ.*, vol. 365, pp. 31–49.

Mukhopadhyay, J., Beukes, N.J., Armstrong, R.A., Zimmermann, U., Ghosh, G. and Medda, R.A., 2008. Dating the oldest greenstone in India: a 3.51-Ga precise U–Pb SHRIMP zircon age for dacitic lava of the Southern Iron Ore Group, Singhbhum craton. *J. Geol.* 116, 449–461.

Mukhopadhyay, J., Ghosh, G., Zimmermann, U., Guha, S. and Mukharjee, T., 2012. A 3.51 Ga bimodal volcanic-BIF-ultramafic succession from Singhbhum Craton: implications for Paleoarchean geodynamic processes from the oldest greenstone succession of the Indian subcontinent. *Geol. J.* 47, 284–311.

Mukhopadhyay, D., 2001. The Archaean nucleus of Singhbhum: the present state of knowledge. *Gondwana Res.* 4, 307–318.

Mukhopadhyay, D., Matin, A., 2020. The architecture and evolution of Singhbhum Craton. *Episodes* 43 (1), 19–50. <https://doi.org/10.18814/epiugs/2020/020002>.

Nelson, D.R., Bhattacharya, H.N., Thern, E.R. and Altermann, W., 2014. Geochemical and ion- microprobe U–Pb zircon constraints on the Archaean evolution of Singhbhum Craton, eastern India. *Precambrian Res.* 255, 412–432.

Olierook, H.K.H., Clark, C., Reddy, S.M., Mazumder, R., Jourdan, F. and Evans, N.J., 2019. Evolution of the Singhbhum Craton and supracrustal provinces from age, isotopic and chemical constraints. *Earth Sci. Rev.* 193, 237–259.

Rai, K.L., Sarkar, S.N. and Paul, P.R., 1980. Primary depositional and diagenetic features in the banded iron formation and associated iron ore deposits of Noamundi, Singhbhum district, Bihar, India. *Mineral. Deposita* 15, 189–200.

Saha, A.K., 1994. Crustal Evolution of Singhbhum-North, Orissa, eastern India. Geological Society of India Memoir 27, Bangalore, India.

Srinivasan, R., and Ojakangas, R.W., 1986. Sedimentology of quartz pebble conglomerates and quartzites of the Archaean Bababudan Group, Dharwar craton, South India. *Journal of Geology*, 94, 199-214.

Upadhyay, D., Chattopadhyay, S., Kooijman, E., Mezger, K. and Berndt, J., 2014. Magmatic and metamorphic history of Paleoarchean Tonalite-Trondhjemite-Granodiorite (TTG) Suite from the Singhbhum Craton, Eastern India. *Precambrian Res.* 252, 180–190.

Williams, G.E., 1991. Upper Proterozoic tidal rhythmites, South Australia: sedimentary features, deposition, and implications for the earth's palaeorotation. In: Smith, D.G., Reinson, G.E., Zaitlin, B.A., Rahmani, R.A. (Eds.), *Clastic Tidal Sedimentology*, Canadian Society of Petroleum Geologists, Memoir, vol. 16, pp. 161 – 177.

Williams, G.E., 2000. Geological constraints on the Precambrian history of Earth's rotation and the Moon's orbit. *Reviews of Geophysics* 38, 37 – 59.

Acknowledgement: This work forms part of the master's thesis of Mr. Sami Salim Ali Al-Khamisi completed in 2024 under the joint supervision of RM and WB. RM and WB gratefully acknowledge financial and infrastructural support from TRC BF 2023 project. RM is thankful to Dr. Trisrota Chaudhuri and Dr. Shuvabrata De for field assistance and academic exchange.

A short note on the procedures adopted for the preservation and conservation of Lower Gondwana Beds of Mandakpal, Pulwama Kashmir by the Department of Geology and Mining JK(UT) India.

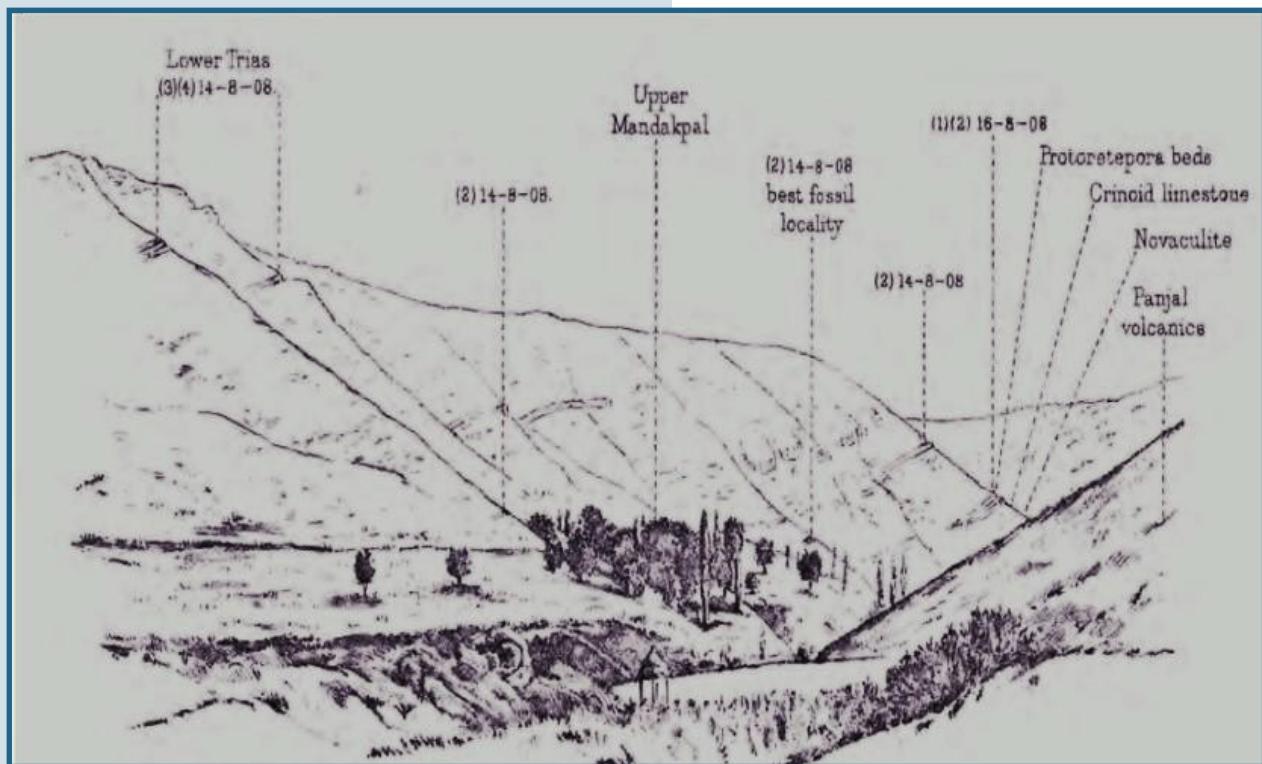
*Mohsin Noor¹, Fayaz A. Bhat²and Khursheed A. Mir³

^{1,2 &3} Department of Geology and Mining, Government of J&K (UT)

*Corresponding Author: noormohsin0@gmail.com

Abstract

The Mandakpal geo-heritage site, situated about 25 kilometers northeast of District Pulwama, is approachable from the paved Pampore-Ladhu road and is a known Lower Gondwana fossiliferous site in the Kashmir Region of India. The geo-heritage site falls in the Survey of India (S.O.I) toposheet no. 43 N/4 and 43 O/1 with geographic coordinate (33°59'30.70"N, 75°01'34.70"E) at an average elevation of 1871 meters above mean sea level. The 252.9-million-year-old Mandakpal fossil beds are located amidst picturesque exposures of the Zabarwan Mountain Range to the north-west and the Wastarwan Mountain Range to the south-east side of the Kashmir valley. Due to the location's immense importance in the field of paleontology, sedimentology and environmental geology, the Regional Office of the Department of Geology and Mining (located in the summer capital of Srinagar), geologically mapped the area and demarcated the boundaries of the fossiliferous zone. Accordingly, Government Order No. 159-IND of 2019 declared the Mandakpal fossiliferous Zone as a protected geo-heritage site within an area of 1012695 square meters.


Keywords: *fossiliferous site, Repository fossil beds. Marginifera himalayensis, Spirifer rajah.*

Introduction

The Valley of Kashmir is blessed with a large number of magnificent geological sites spanning an enormous geological timeframe. These sites attract not only earth scientists from all over the world, but have also gained the attention of the general public. The Mandakpal fossiliferous site contains a large and rare collection of invertebrate fossils. Specimens recovered from the Mandakpal geo-heritage sites are being preserved and displayed at the Department's Geoscience Museum, located at Budgam, and were identified and documented by geologists from the Department of Geology and Mining, Srinagar.

Geological Setup

The area under report forms the south-eastern part of the Kashmir Basin (KB) wherein Proterozoic to Quaternary rocks of diverse origin are exposed. The Formations consist of Panjal Volcanics, Gondwana Beds, the late-Permian Zewan formation, and Triassic limestone and Quaternary deposits of Holocene age (Table 1)^{1, 2}. The Lower Gondwana Beds of Mandakpal represents a large and well-preserved fossil assemblage³. Marine as well as some terrestrial well-preserved fossil remains marks the section's importance in terms of biologic perception of the Permian–Triassic Boundary (PTB) event. The rocks of the Lower Gondwana Beds at Mandakpal consist of an arenaceous sequence grading upwards through argillaceous into a more carbonate sequence⁴. At Mandakpal, a rock sequence exposed on the northwest-southeast trending ridge (Figure 1), forms the base of the Permian, and all the beds are calcareous in comparison^{5,6}. In the middle of the lower shale bed, two fossiliferous bands are well exposed bearing *Marginifera himalayensis* and other *brachiopods*⁷. Further upwards in the section, is a well-preserved calcareous bed, measuring less than 0.2 meters in thickness bearing specimens of *Spirifer rajah* and other species of *Spirifer*.

(Figure 1): Middlemiss C.S (1910) drawing of the Mandakpal Valley with the main stratigraphic levels.

Formation	Lithology	Age
<i>Quaternary</i>	<i>Alluvium and Talus/Scree</i>	<i>Holocene</i>
<i>Triassic Limestone</i>	<i>Limestone, Shale and Sandstone</i>	<i>Triassic</i>
<i>Zewan</i>	<i>Limestone, Calcareous Sandstone and Shale</i>	<i>Mid-Late Permian</i>
<i>Gondwana Beds</i>	<i>Black Shale and Novaculite</i>	<i>Early Permian</i>
<i>Panjal Volcanics</i>	<i>Dark coloured amygdaloidal basaltic Lava flows</i>	<i>Permo-Carboniferous</i>

Table 1: The litho-stratigraphic sequence of the Mandakpal geo-heritage site

Fossil assemblages

Bryozoans, Brachiopods, Marginifera himalayensis, Spirifer rajah, Bivalves, and Ammonoids are geological age representatives of the Permo-Triassic and were observed in black shale and limestone of Zewan (Figure 1)^{5, 6, 7}. The *Novaculite Bed* is representative of Early Permian aged Gondwana Beds and was observed at geo-coordinate 33°59'30.70"N 75°01'34.70"E (Figure 2).

(Figure 2): Novaculite Bed age representative of Early Permian

The general strike of the Zewan beds is N 75° E to S 75° W with inslope dip of 13° due north-west. Taking into consideration the lateral extension of the bedrocks that bear these *important fossil assemblages*, (Figure 3, 4, 5, 6) the Department reserved the area as a *geo-heritage site* from the water tank upwards to the top of the hill near the shrine of Niam Sahib (Figure 7 and 8).

Figure 3: Repository fossil beds Spirifer rajah

Figure. 4. Spirifer Rajah, an index fossil.

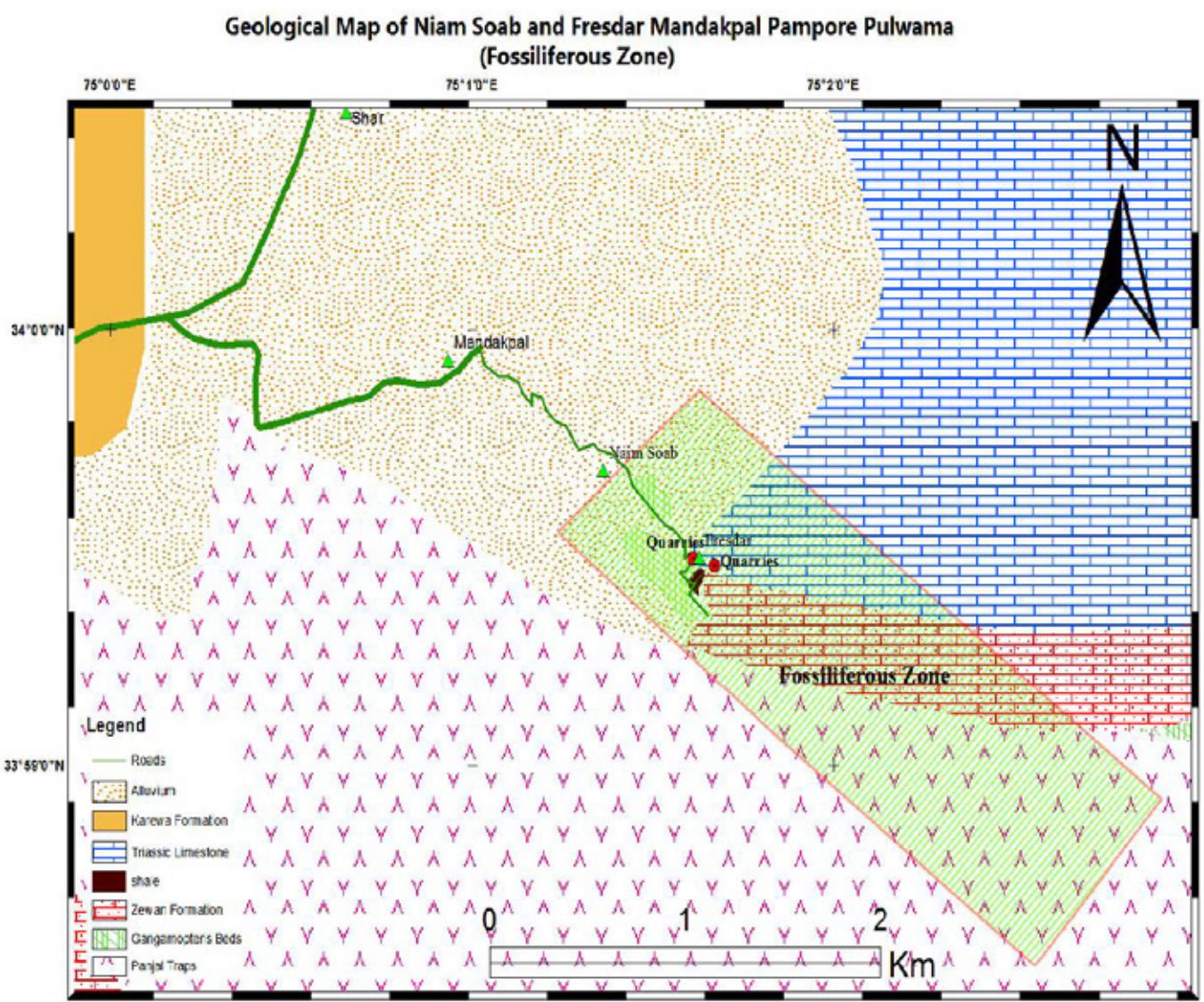

Figure. 5. Dorsal view of brachiopod shell.

Figure. 6. Permian Fossil assemblage at Mandakpal

Figure7: Picture of Mandakpal Geo heritage site

Prepared By
 Dr. A.S. Sodhi (Deputy Director), Khursheed Ahmad Mir (Mineral Officer), Mohsin Noor (Geologist Gr-III),
 Fayaz Ahmad Bhat (Geological Assistant) and Ishtiyaq Ahmad Qazi (Surveyor)

Figure 8: Mandakpal Geo-heritage site base map.

Demarcation, preservation and maintenance of Mandakpal geo-heritage site.

During the summer of 2018, geologists from the Department of Geology and Mining, Srinagar including Mohsin Noor, Khursheed Ahmad Mir and Fayaz Ahmad Bhat, under the supervision of Dr. Amerjeet Singh Sodhi, Deputy Director, geologically mapped the Mandakpal fossiliferous site over an area of 1,012,695 square meters with the help of an Electronic Total Station (E.T.S) and Navstar Global Positioning System (**GPS**), a satellite-based radio navigation system^{8, 9}. After the field work, the base map (Figure 8) was prepared on GIS

Platform by the team which was cross-checked once again in the field before its final submission to the Administrative Department, Civil Secretariat, Srinagar for issuance of notification as a protected zone in the Government Gazette. Accordingly, on 26th of July 2019, through Government Order No. **159-IND of 2019**, the Mandakpal fossiliferous site was declared as a geo-heritage site¹⁰. Presently, the Mandakpal geo-heritage site is looked after by a team of geologists and is maintained through funds of the District Mineral Foundation Trust (DMFT), Pulwama^{11,12,13}.

Conclusion

The Mandakpal geo-heritage site hosts a well-preserved mega fossil assemblage in the Lower Gondwana beds with a geological age of 252.9 million years. Marine and some terrestrial fossil remains marks the Sections importance in terms of biologic understanding of the Permian–Triassic Boundary (PTB) event. At present, the geo-heritage site is looked after by a team of geologists and maintained through the funds of District Mineral Foundation Trust (DMFT), Pulwama.

Acknowledgment

The first author is thankful to Mr. O. P. Bhagat, Director, Department of Geology and Mining, Jammu and Mr. Nisar Ahmad, Joint Director, Department of Geology and Mining, Kashmir for their active support and guidance. I am also thankful to Seyedeh Saeideh Mortazavi, Research Institute for Earth Sciences, Iran for technical support rendered to me during the submission of this research article. This has only been possible because of her guidance and time management.

REFERENCES

1. Ahmad. F, Chib. C.S, and Singh, A.J (1978). Permian System in the north and north-east part of Kashmir Himalayas. *Himalayan Geology*. 8 (1) 224-251.
2. Nakazawa et al (1975). The Upper Permian and Lower Triassic in Kashmir, India. *Mem. Fac. Sci., Kyoto Univ., Ser. Geol. And Min.*, v. 42, p.1-106.
3. Nadeem Ahmad Bhat and Riyaz Ahmad Mir (2023). Potential of Guryal as Geotourism site in Kashmir; Permian –Triassic Mass Extinction Section. *Special Abstract Volume, Geological Survey of India*. 15-17.
4. Kapoor H.M (1996). The Guryul ravine section, candidate of the Global Stratotype and Point (GSSP) of the Permian-Triassic boundary (PTB). Yin H, editor. *The Paleozoic-Mesozoic Boundary: Candidates of the Global Stratotype Section and Point of the Permian-Triassic*.
5. Middlemiss, C.S. (1909). Gondwanas and related marine sedimentary systems of Kashmir. *Rec. Geol. Surv. India* 37, 286–327.
6. Middlemiss, C.S. (1910). A revision of the Silurian-Trias sequence in Kashmir. *Rec. Geol. Surv. India* 40, 206–260.
7. Diener, K., 1912. The Trias of the Himalayas. *Memoirs of the Geological Survey of India*, 36 (3):1-176.
8. Mohsin Noor (2023). Guryal Ravine – Permian-Triassic (P-Tr.) fossiliferous treasure Khan-mouh Srinagar, Kashmir, India. *International Research Journal of Earth Sciences*. Vol. 11(2), 1-6, August (2023). ISSN 2321 – 2527.

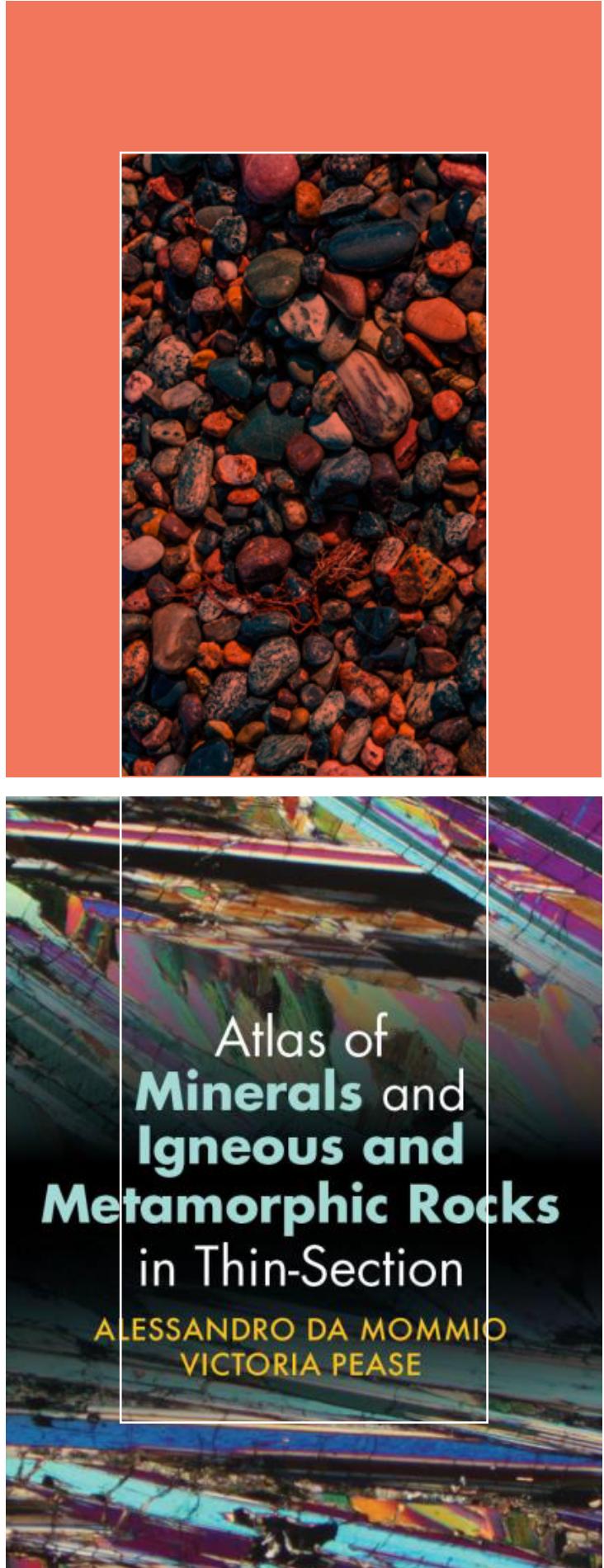
9. Mohsin Noor (2022). The Limestone Deposits of Sangari Khanmoh Srinagar Kashmir India. Conference Paper: 38 Convention of Indian Association of Sedimentologists. New Delhi India.

10. Mohsin Noor (2024). Lower Gondwana beds of Mandakpal Kashmir, India. International Research Journal of Earth Sciences. Vol. 12(2), 1-10, August 2024. ISSN 2321 – 2527.

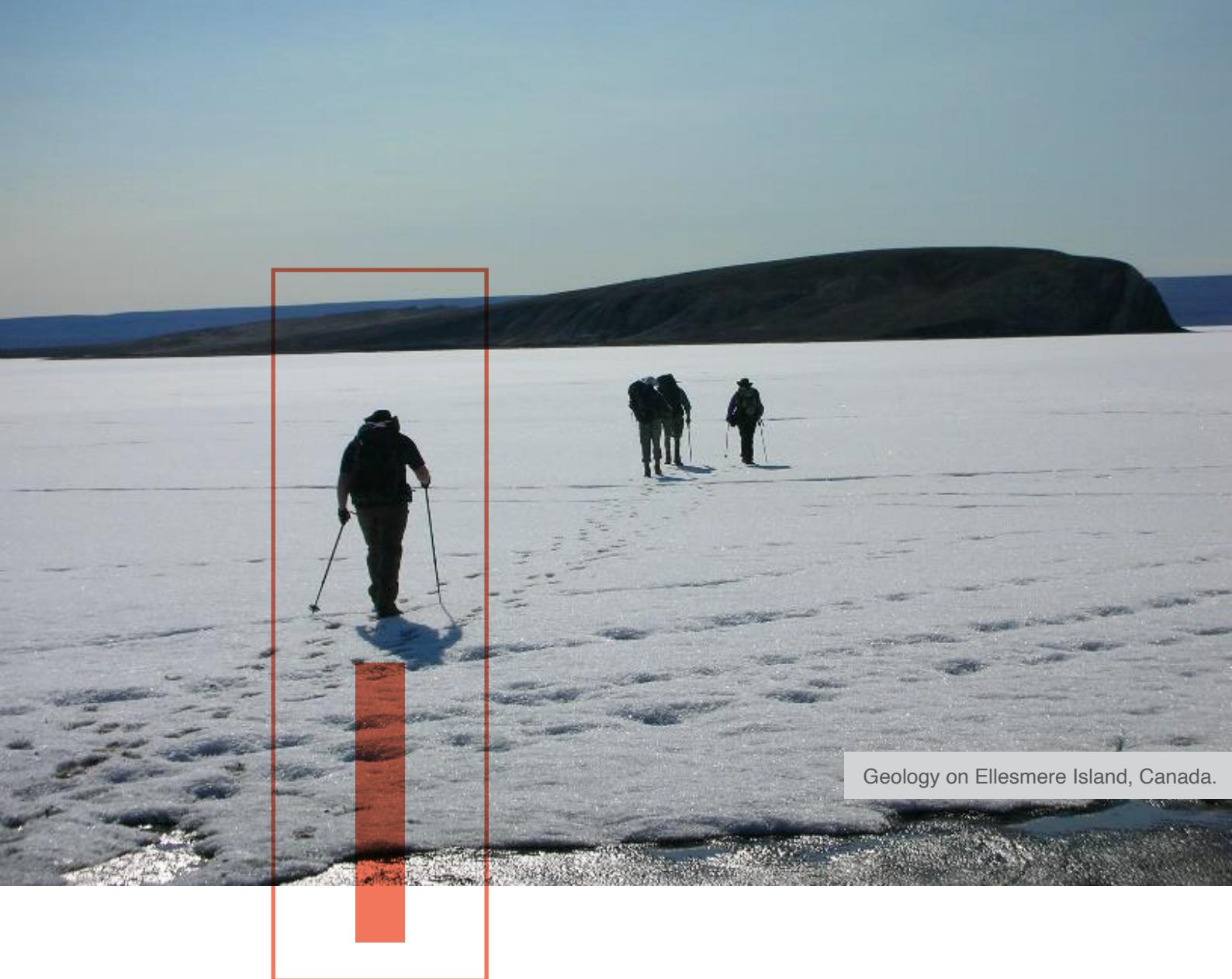
11. Mohsin Noor (2024). Lower Gondwana Beds at Mandakpal GeoPark (Notified by Government of Jammu & Kashmir, 159-IND of 2019). Souvenir of 12th International Science Congress 2024 8-9th December 2024.

12. Preservation of the geological fossiliferous zone at Niam sahib and Fresdar. Industries and Commerce, Civil Secretariat, Jammu. Government order no 159-IND of 2019 dated 26th of July 2019.

13. The Jammu and Kashmir minor Mineral Concession Rules 2016 Dated 31.03.2016.


Interview with Professor **Victoria Pease**

- Please tell us about yourself


I am a geologist, the professor of Tectonics and Magmatism at Stockholm University, Sweden. I moved to Sweden in 1989 and have spent most of my professional life here. I was born in the U.S. and after completing my BSc at the University of California (Santa Cruz), I worked at the U.S. Geological Survey for about ten years. This was an inspirational time for me because I got to explore different subdisciplines in the subject (field mapping, laser terametry, isotope dating, paleomagnetism, geochemistry, etc.), travelled across the vast western U.S. (and got paid for it!), and I met so many fantastic people... It was a great time for me, both personally and educationally. During this period, I met and married my husband, Martin Whitehouse, who was a visiting post-doc from the U.K. After marrying, we moved to England where I completed PhD at University of Oxford under the supervision of Prof. John Dewey, an inspirational field geologist and expert in tectonic processes.

-How did you become a geologist?

As an undergraduate, I took a mineralogy course to satisfy part of the university 'natural science' requirement and I loved it! I immediately changed my degree to Earth Sciences so I could keep learning about minerals and rocks. Studying minerals under the microscope opened my eyes to a whole new world! Some people find rocks to be quite boring, but I can tell you that a single thin-section of a rock and the minerals in it reveals so much about how and where the rock formed, the pressures, temperatures and processes that affected it, whether or not it can be dated to determine the age of these processes - there is so much information stored in a simple thin-section. This is why I and my colleague Alessandro Da Mommio wrote our text book on minerals and rocks in thin-section. Petrographic thin-sections are a simple yet incredibly powerful method for understanding minerals and rocks, and it is necessary to convey to our students something of the importance of what they are doing and why they are doing it.

To be published by Cambridge University Press in 2025

Geology on Ellesmere Island, Canada.

- What scientific projects/locations have you worked in?

Being a geologist is fantastic because most of my work involves getting to secluded and pristine sites of natural beauty. I have floated down the wild rivers of Alaska, hiked across the remote tundra of Arctic Russia, helicoptered into Arctic Canada, taken ships to isolated Arctic islands, and driven across vast regions of Egypt, Jordan, Yemen, and Oman. I have led two larger international research teams, one project focussed on Arctic tectonics and another on the tectonic evolution of Saudi Arabia. All of my work relates to understanding the tectonic evolution of an area - this is the driving motivation of most of my research because I want to understand how the land we live on came to be the way it is. My kind of work is not for everyone, but if you like being physical and going places where not many others have been, its great!

- Do you have a favorite?

This is a difficult question because I love all of nature, from the stark beauty of the desert, to the remote, dense forests of Alaska. However, there is one super, special place that I have worked and would love visit again - that is the island of Socotra in the Arabian Sea! This unique and beautiful island has excellent geology in a very special setting - Socotra is a geologically isolated fragment of southern Gondwana. Consequently, it has a rich and unique biodiversity - an absolutely special location on our planet.

SOCOTRA

This unique and beautiful island has excellent geology in a very special setting.

Dragon blood trees of Socotra.

- What methods do you employ?

During fieldwork we are hiking or boating and sleeping in tents. We cook on small stoves and have to bring all our food for the expedition with us. We also have to bring weapons to defend ourselves against grizzly or polar bears. Otherwise we are moving by helicopter from a base-camp or ship. Once back at the lab with samples, I employ petrographical, geochemical, and geochronological analytical methods. I mostly use x-ray fluorescence (XRF) and laser ablation inductively coupled mass-spectrometry (LA-ICPMS). For XRF, I crush the rock into powder and convert it to a homogeneous glass at 1000°C. The glass is then analyzed for major and trace element compositions, which are used to determine the tectonic setting of the rocks. I also do a lot of U-Pb isotopic dating (mostly zircon) for both igneous and sedimentary rocks - this provides me with ages of the samples.

- What are the challenges for students and professionals in the geological sciences today?

A big challenge for the geosciences today is the ability to adapt to rapidly changing needs. The profession is always changing, whether due to societal needs or technological advances, however, the speed of change just now is very fast and this is a real challenge for us. This is especially true with regards to the green energy transition and the shift away from the oil and gas sector - this change is happening rapidly and sometimes exceeds the ability of universities and industry to adapt. For example, in hiring new staff with appropriate skills, as well as being able to educate students appropriately by rapidly adjusting and delivering a revised curriculum for geoscience students. In addition, with the declining birth demographics of many countries, the education and employment of women is more and more important; female education and expanding career choices need to be better integrated with the changing needs of the field.

- Do you have any advice for young academics trying to navigate this profession?

I am very grateful for the work I am able to do, the places I get to visit, and the people I have met throughout my career. However, it has not always been easy and without my passion for the subject, I might have given up before I was able to make the achievements I have. If I can offer anyone advice, first and foremost I would say find your passion and follow your heart. Without passion for your work, you will never have a career, but just have a job. If you want a long, satisfying career, pursue something you love!

JOIN GSO NOW

**Explore and learn the wonders of
Oman's Geology!**

To register as a member contact: communication@gsooman.org

www.gso-oman.org

@GsoOman

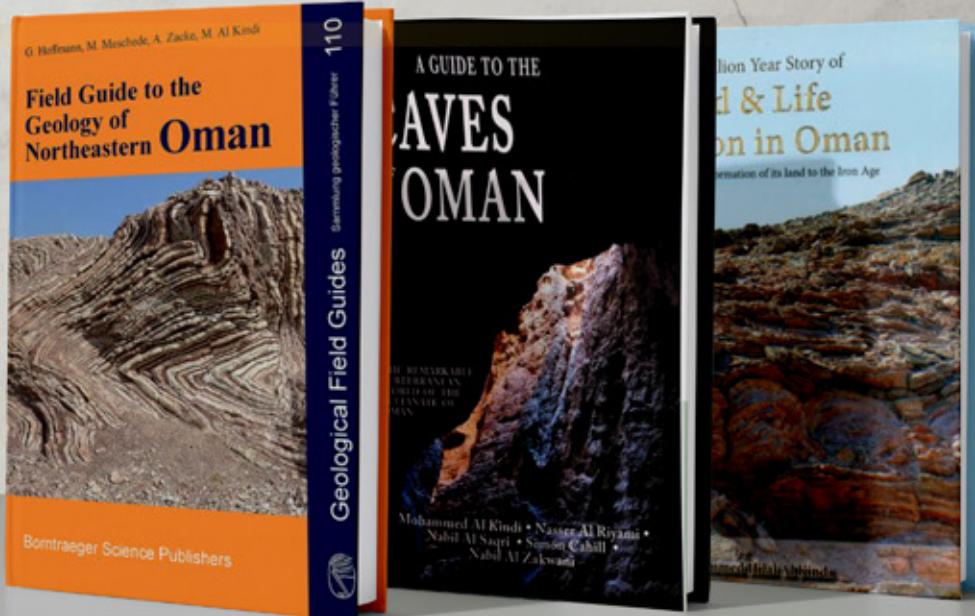
@Gso_Oman

Geological Society of Oman

GSO_Geological Society of Oman

92431177

انضم
للجمعيّة
الجيولوجيّة
العمانيّة
الآن



اكتشف عجائب عمان الجيولوجية
للتسجيل في عضوية الجمعية تواصلوا معنا:
communication@gsooman.org

Publications with us... and More!

**To order GSO Publications:
Email us at**

communication@gsooman.org
Or via our Social Media Platformsed

