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Dear Colleagues, 

 
A year passes with tremendous events 
that slightly modified our programs and 
means of communications to adopt with 
health and safety precautions due to 
COVID-19 outbreak.  
Late 2020; the Geological Society of 
Oman introduced ‘’Omani Female Geosci-
entists’’ recognition series that focused 
on our Omani women who pose a career 
in geoscience within the oil and gas sec-
tor. This is a small token of appreciation 
and pride of our Omani women col-
leagues and gives the talent for younger 
generations to be motivated and to con-
tinue the success.  
We have also continued with our tech-
nical programs and hosting geoscientists 
in live broadcast. Furthermore, GSO in-
troduced its first workshops (i.e. online 
courses) designed for young profession-
als and researchers. We aim in future to 
extend it further to be undertaken by em-
ployees in oil and gas companies operat-
ing in Oman.    
Dear members, we are looking forward 
to the year 2021 that will certainly carry 
more activities and programs to help and 
support the preservation of our wonder-
ful geology in order to safeguard our 
marvelous geological outcrops and fos-
sils in Oman.  
I hope the year 2021 will be prosperous 
and brighter where the Geological Socie-
ty of Oman can resume practicing its role 
via progressing technical programs and 
activities (i.e. field trips).  

BY THE EDITOR 

Naima Al Habsi  

Petroleum Development of Oman              

Aisha Al Hajri  

Petroleum Development of Oman              

Elias Al Kharusi 

President of the GSO 

President 
Address 

Al Hajar Editorial Team: 

Husam Al Rawahi 

GSO Editor 

Petroleum Development of Oman              

Dear GSO member, 
 
Last year has brought us into sharp focus on the necessi-

ty of adaptability in which we had to be resilient to differ-

ent challenges to our behaviors and way of working and 

living. Global events are not something unusual and they 

did happen before but the way to adopt to their afteref-

fects are the key to be better prepared for future events. 

We as geoscientists have the role to understand and ana-

lyze the past to be able to predict the future. Rocks and 

fossils in the geological records are the witness to past 

processes showing that different changes did take place 

and the Earth did adapt to the changes. Thus, I encourage 

you to be part of this global preparation of what are hid-

den in our future by exploring and learning with what our 

planet can reveal to us so we can be ready for any future 

events. I wish you an enjoyable read. 

Talal Al Aulaqi         

Muzna Al Abri 

Bp Oman              
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“WE WANT YOU TO TELL 
ABOUT GEOLOGY OF 
OMAN” 

 
 THESE PUBLICATIONS 

WILL HELP YOU AT 
YOUR MISSION 
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Introduction 

The early Paleoproterozoic was marked by the on-

set of global glaciations, a substantial shift in ter-

restrial geochemistry and biology and led, ulti-

mately, to the development and flourishing of eu-

karyotic life (Horodyski and Knauth, 1994; Kirsch-

vink et al., 2000; Prave, 2002; Condie et al., 2009; 

Konhauser et al., 2011; Van Kranendonk and Ma-

zumder, 2015; Van Kranendonk et al., 2015). An ap-

parent minimum in the juvenile magmatic record 

between 2.4 and 2.2 Ga has been postulated as a 

consequence of shutdown of subduction (Condie et 

al., 2009). A critical synthesis of global geological 

record from about 2.3 to 2.2 Ga ago indicate an 

early Paleoproterozoic tectono-magmatic lull 

(Spencer et al., 2018 and references therein). It has 

been suggested that plate tectonics did not com-

pletely shut down but the Siderian Quiet Interval 

(Pehrsson et al. 2015)(Spencer et al., 2018).; repre-

sents an overall diminished tectonic activity (2.3-

2.2 Ga; Spencer et al. 2018) . This episode of mag-

matic quiescence was terminated around 2.2 Ga.

(Spencer et al., 2018).  

            In significant contrast to other cratonic 

blocks of the world (Eriksson and Condie, 2014), 

the Pilbara craton of Western Australia documents 

a near-continuous geological record of early Earth 

history across the rise of atmospheric oxygen (the 

Great Oxidation Event, GOE (Trendall and Blockley, 

1970; Mazumder and Van Kranendonk, 2013; Van 



 7 

Kranendonk and Mazumder, 2015; Fig. 1) and provides us a rare 

opportunity to gain valuable insights in to the extant geological 

processes. Herein we will briefly review the present state of 

knowledge on the sedimentology and stratigraphy of the Paleo-

proterozoic Turee Creek and the Lower Wyloo Groups of the 

southern Hamersley province, Pilbara craton.      The present 

contribution is an initiative of the GUtech to undertake research 

on Paleoproterozoic successions of the Pilbara craton involving 

undergraduate students.  

 

Geological and geochronological background: 

The early Paleoproterozoic stratigraphic record in the Pilbara 

craton is represented by the Turee Creek Group (TCG) and the 

Lower Wyloo Group (LWG) of rocks (Trendall, 1981; Martin et al., 

2000; Van Kranendonk and Mazumder 2015). The TCG conforma-

bly overlies the Boolgeeda Iron Formation (Figs. 1-2). The 2449±3 

Ma Woongarra Rhyolite lies conformably below the Boolgeeda 

Iron Formation (Fig. 1; Barley et al., 1997). The TCG is unconform-

ably overlain by the LWG (Trendall, 1981; Martin et al., 2000; Ma-

zumder and Van Kranendonk, 2013; Martin, 2020).  The 2209±15 

Ma Cheela Springs Basalt overlies the LWG (Fig. 1: Martin et al., 

1998). A dolerite sill interpreted as coeval with eruption of the 

Cheela Springs Basalt and intruding the Kungarra Formation of 

the Turee Creek Group, has a 207Pb/206Pb baddelyite age of 

2208±15 Ma (Müller et al., 2005). Interested reader may consult 

detrital zircon ages reported by Krapez et al. (2017) and Ca-

quineau et al (2018) from the TCG and LWG successions. Martin 

(2020, his fig. 31) has reviewed the published geochronological 

and geological data from these successions.  

Figure 1. Early Paleoproterozoic 

stratigraphic sequence of the 

Pilbara craton (modified after 

Van Kranendonk and Mazumder, 

2015). 
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Figure 2. Geological map of Hardey Syncline, Western Australia (modified after Martin, 1999 and Van Kranendonk 

and Mazumder, 2015); map of Australia in inset 

The early Paleoproterozoic sedimentation history on the southern Hamersley province 

The Turee Creek Group (TCG) 

The Turee Creek Group conformably overlies the Boolgeeda Iron Formation and is made up of lower 

Kungarra, middle Koolbye and upper Kazput Formations (Fig. 1; Trendall, 1981; Thorne and Tyler, 1996; 

Krapez, 1996; Martin et al., 2000; Van Kranendonk and Mazumder, 2015; Van Kranendonk et al., 2015). The 

Kungarra Formation is characterized by a shallowing upward entirely marine succession (sandstone-



 9 

siltstone-shale alternations with minor stromatolitic carbonate rocks) and preserves records of two 

Paleoproterozoic glaciation events (Figs. 3A-B; Van Kranendonk and Mazumder, 2015; Van Kranendonk 

et al., 2015). Sedimentary facies analysis reveals two distinct glacial cycles within the Kungarra For-

mation (Van Kranendonk and Mazumder, 2015). In the northern limb of the Hardy syncline area (Fig. 2), 

the Kungarra Formation is characterized by a lower offshore and an upper shoreface facies association 

(Van Kranendonk et al., 2015). The Kungarra Formation is conformably overlain by the Koolbye For-

mation (Fig. 1). The Koolbye Formation is characterized by a lower tidal flat, middle beach-coastal aeoli-

an and an upper fluvial facies association (Martin et al., 2000; Eriksson and Condie, 2014; Mazumder et 
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al., 2015). The Koolbye Formation is conformably 

overlain by the Kazput Formation (Fig. 1; Trendall, 

1981; Martin et al., 2000; Martindale et al., 2015). In 

significant contrast to the Kungarra and Koolbye 

Formations, the Kazputs are characterized by 

~350m thick predominantly stromatolitic carbonate 

rocks (with some clastics at the basal part) with 

microstromatolite and ooids (Martin, 1999) and 

formed in a shallow marine setting (Martin et al., 

2000; Van Kranendonk, 2010; Eriksson and Condie, 

2014; Martindale et al., 2015).  

 

The Lower Wyloo Gropu (LWG) 

The LWG unconformably overlies the TCG of rocks 

(Fig. 4A) and is unconformably overlain by the up-

per Wyloo Group. The lower Wyloo Group is made 

up of the Beasley River Quartzite (BRQ) and the 

Cheela Springs Basalt (Fig. 1). The lowermost 

polymictic Three Corner Conglomerate Member of 

the BRQ (Fig. 4A) represents alluvial fan-fluvial 

complex (Trendal, 1979; Mazumder and Van 

Kranendonk, 2013; Mazumder, 2017). The overlying 

medium to fine-grained sandstone of the BRQ with 

spectacular heavy mineral layering, dunes, low 

amplitude ripples, and pinstripe laminations, are 

beach deposits with aeolian reworking. The domi-

nant, quartz rich sandstone member of the BRQ is 

largely fluvial, based on association of poorly sort-

ed fining upward sandstone units, trough cross 

bedding, asymmetric ripples, and fluvial architec-

tural elements (Mazumder and Van Kranendonk, 

2013; Mazumder, 2017). The topmost fine-grained 

sandstone and siltstone unit of the BRQ (the Num-

mana Member; Fig. 2) is largely aeolian, based on 

the presence of large dune and interdune 

(adhesion features and translatent strata; Fig. 4B-

C) facies (Mazumder, 2019). The nearshore to aeo-

lian interpretation for the BRQ is compatible with 

the inferred subaerial eruption of the overlying 

Cheela Springs Basalt (Mazumder and Van 

Kranendonk 2013 and references therein).       

Figure 3. The Turee Creek Group; (A) Glacial diamic-

tite from the Kungarra Formation (B) Wave ripples 

within the Kungarra Formation 
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Sea level change 

The Kungarra Formation of the TCG has a grada-

tional, conformable lower contact with underlying 

banded iron-formation of the Hamersley Group 

(Figs. 1-2).  The lower Kungarra offshore shale-

sandstone facies association passes upward into 

shallow marine sandstone-siltstone-shale-

stromatolitic carbonates of shoreface origin fol-

lowed by the deposition of glacial diamictite (cf. 

Van Kranendonk and Mazumder, 2015; Van 

Kranendonk et al., 2015). Each of the two glacial 

cycles sharply commenced with a falling stage 

systems tract (Plint and Nummedal, 2000) and ter-

minated with a transgressive systems tract, con-

sistent with drawdown and subsequent release of 

large volumes of seawater from, and into, waxing 

and waning ice sheets, respectively (Van 

Kranendonk and Mazumder, 2015). The Kungarra 

Formation is conformably overlain by the Koolbye 

Formation (Figs. 1-2) The Koolbye Formation rec-

ords a marine to fluvial transition (Mazumder et 

al., 2015) and the tidal flat to beach to aeolian-

fluvial transition implies depositional regression 

(falling stage systems tract). The Koolbye-Kazput 

transition indicates marine transgression (cf. Mar-

tin et al., 2000; Eriksson and Condie, 2014; Ma-

zumder, 2017).   

In the Horseshoe Creek area (western part 

of the basin, see Fig. 2), the Kungarra Formation is 

Figure 4. The Lower Wyloo Group; (A) The Three Cor-

ners Conglomerate (LWG) (B) Adhesion feature in the 

Nummana Member (LWG) (C) Pinstripe lamination in 

the Nummana Member (LWG); pen length 10cm  
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unconformably overlain by the LWG (Fig. 3A) over-

running the Koolbye and Kazput Formations 

(Trendall, 1979; Mazumder and Van Kranendonk, 

2013). A prolonged period of surficial exposure im-

mediately after the deposition of the TCG and be-

fore the deposition of the LWG has been inferred 

(Morris 1980, 1985; Mazumder and Van 

Kranendonk, 2013; Mazumder, 2017). The TCG-LWG 

contact is an angular unconformity (Mazumder and 

Van Kranendonk, 2013). The Cheela Springs basalt 

is a typical flood basalt and is made of plagioclase 

feldspars and barroisitic hornblende with relict 

clinopyroxenes and secondary chlorite, epidote, 

titanite and leucoxene (alteration product of titani-

um bearing mineral phase). The chlorite grains are 

large and are characterized by anomalous bluish 

interference colour and are partially oxidized. The 

entire LWG represents a nearshore to terrestrial 

deposit (Mazumder, 2017, 2019).  

 The preservation of the LWG terrestrial 

succession has been interpreted as a consequence 

of rapid basin subsidence during rifting (Mazumder 

and Van Kranendonk, 2013). Such subsidence might 

have taken in intracontinental or continental mar-

gin rifts, or back-arc or transtensional setting. As 

there is no evidence of a contemporaneous arc, 

nor an orogen during LWG sedimentation, a conti-

nental rift setting for the LWG has been proposed 

(Mazumder and Van Kranendonk, 2013: Mazumder, 

2017, 2019). The preservation of delicate aeolian 

features (Figs. 4B-C) supports rapid subsidence in 

a continental rift setting (cf. Mazumder and Van 

Kranendonk, 2013; Mazumder, 2019). 

Geodynamic implications 

Australia, India and South Africa constituted a Late 

Archaean southern supercontinent (Aspler and 

Chiarenzelli, 1998; Eriksson et al., 1999, 2006; Ma-

zumder et al., 2000; Reddy and Evans, 2009; Ma-

zumder et al., 2015). Paleoproterozoic glacial de-

posits are well known from Australia and South 

Africa (Bekker et al., 2001; Martin, 1999; Rasmussen 

et al., 2013; Eriksson and Condie, 2014; Van 

Kranendonk and Mazumder, 2015; Pehrsson et al., 

2015) and Paleoproterozoic glacigenic rock has 

been described from the Sausar Group, Bastar 

craton of India (Mohanty et al., 2015).  

The Paleoproterozoic basins of India are 

essentially intracratonic depositories (Mazumder 

and Eriksson, 2015); the ~2.5-2.1 Ga Dongargarh 

(Bastar craton, India) basin-fill suggests post-

orogenic collapse and concomitant rift basin for-

mation followed by stable shelf development and 

glacigenic deposits (Mohanty et al., 2015; Ma-

zumder and Eriksson, 2015). The ~2.6-1.6 Ga supra-

crustal successions of the Singhbhum craton, India 

formed in an intracontinental rift setting and rec-

ords a transition from alluvial fan-fluvial (the 

Dhanjori Formation) to deep to shallow marine 
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(the Chaibasa Formation) and then fluvial-aeolian 

(the Dhalbhum Formation) (Mazumder et al., 2019). 

Other Precambrian basins of India lacks early 

Paleoproterozoic successions or contains late 

Paleoproterozoic to Neoproterozoic successions 

or are entirely Archaean (Saha and Mazumder, 

2012; De et al., 2016; Mazumder et al., 2019).  

The Transvaal Supergroup (2.66-2.05 Ga) 

represents the late Archean-early Paleoprotero-

zoic transition in South Africa (Eriksson et al., 

2006). The Transvaal Supergroup succeeded the 

relatively short-lived Ventersdorp plume event 

(Eriksson et al., 1999, 2006; Mazumder et al., 2012). 

The lower part of the Transvaal succession repre-

sents alluvial braid plain facies association grad-

ing to transgressive shallow-marine and braid-

delta facies association (Eriksson et al., 2006; Ma-

zumder et al., 2012). The Malmani Subgroup of the 

overlying Chuniespoort Group is represented by 

transgressive black shale deposits followed up-

ward by the carbonate platform deposits. The 

overlying Penge Formation and Duitschland For-

mation are characterized by banded iron for-

mation and lacustrine deposits, respectively 

(Mazumder et al., 2012). The overlying Pretoria 

Group represent largely alluvial fan-braided 

stream-epeiric sea and shallow lacustrine depos-

its (Eriksson et al. 2006; Mazumder et al., 2012).    

The TCG lacks juvenile zircons from ac-

creted and uplifted arc rocks but contains recy-

cled zircons from older Hamersley succession 

(e.g., Martin et al., 2008; Martin, 2020 and refer-

ences therein) and is inconsistent with the fore-

deep setting as it was previously interpreted 

(Martin et al., 2000 and references therein; Young 

2013). Neither there is evidence of early Paleopro-

terozoic (2.45-2.22 Ga) orogen nor arc in the 

Pilbara craton (Mazumder and Van Kranendonk, 

2013; Van Kranendonk et al., 2015). The sedimento-

logical analysis clearly reveals that the TCG as 

well as the LWG deposited in an intercontinental 

rift setting (Mazumder and Van Kranendonk, 2013; 

Van Kranendonk et al., 2015; Mazumder, 2017) 

broadly similar to the Huronian succession of 

Canada (Young, 2013). The unconformity between 

the TCG and the LWG indicate prolonged emer-

gence and stable tectonic environment 

(Mazumder and Van Kranendonk, 2013) which may 

be a consequence of global magmatic shutdown 

(cf. Condie et al. 2009) or Siderian Quiet Interval 

(Pehrsson et al., 2015). More geochronological da-

ta from the TCG and overlying LWG and global 

chronostratigraphic correlation with other Sider-

ian successions of the world is essential to re-

solve this. 
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Introduction: 

The study area is located in the north-east section of Oman, south of the south-eastern section of the 

Hajar mountains (Figure 1). The area is constrained around the BA-Borehole sites drilled by the Oman 

drilling project (ODP). The focus of the study is to characterize the brittle structures currently being 

studied as the Issmaiya Lineament Swarm (ILS). ILS is a north-west subvertical fault zone with strike-

slip movement. This fault zone extends from the Mesozoic autochthonous unit B to the NW and the 

Paleogene basin to the SE. The study area is located in the area where the fault affects the allochtho-

nous Samail unit, and the lithology is mainly serpentinized Harzburgite and Dunite. The Ibra basin to the 

SE is part of the Cenozoic autochthonous unit. The wadi is covered by Quaternary alluvial deposits 

(Peters et. al., 1986). 

The lineaments in this area are currently studied under the name of ‘Ismaiya Lineament swarm’ in a col-

laborative effort between GUtech and University of Oslo.  

 

Methodology: 

To identify the connectivity and the nature of the fractures different methods were used: 

 Field structural analysis: different outcrops nearby the wells were chosen and three different types 
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of measurements were taken: fault plane slick-

en-slides and slicken-lines, scan lines where 

the frequencies of fractures were tallied per 

meter, and finally stations which are meter-

long outcrops where the orientation and fre-

quency of the different families of fractures 

near the wells to help correlate fractures inter-

preted from the acoustic borehole image logs. 

 Pumping test evaluation: pumping tests were 

carried out through packer tests and produced 

drawdown values using a pressure sensor. The 

pressure data were changed into head values. 

These values were plotted against time using 

different models in Hytool (Renard 2017) 

(Matlab) to calculate transmissivity values for 

different intervals. 

 Acoustic borehole image logs analysis: The 

borehole image logs consist of travel-time im-

age logs and Amplitude logs. The fractures 

were interpreted and logged using WellCad: Im-

age and structure interpretation model. The op-

tical image logs were also used to log fractures 

displacing veins and fractures with large open-

ings. 

 Hydrogeochemical log analysis: the hydrogeo-

chemical logs of pH, temperature, Eh, conduc-

tivity, and pressure were used to identify anom-

alies to correlate with fractures nearby. 

 Flowmeter logs: these logs identify zones of 

fluid exchange in the wellbore and is used to 

help identify the changes in the other hydrogeo-

chemical logs and pumping test values. 

Figure 1. Location maps of the study area. 
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Results: 

The fractures were grouped into 5 different groups along the wadi to show changes in orientation. The 

fractures upstream of the wells are mostly oriented NW-SE, while downstream of the wells they are ori-

ented NE-SW.  
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The transmissivity values correlate well with the flowmeter logs, where zones with calculated high 

transmissivities are also seen in the flowmeter log to show exchange in fluids in the same zone. The Hy-

drogeochemical logs also show anomalies within the same zones. 

Three high aperture fractures were interpreted in the borehole image logs of well BA3A. Those fractures 

with high frequency of fractures along the borehole in the well and shattered outcrop close to the well 

may be explained by the well being positioned close to two fault plane intersections. 
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Conclusion: 

The results show that the study area is affected by two systems of fractures formed by two main fault 

orientations. These fracture systems caused complex groundwater flow systems in response to the 

structural changes. The fractures frequency lowers with depth as expected due to the affects of weath-

ering. The conditions around borehole are unique which makes linking the fracture systems to the those 

in the nearby outcrops difficult. 
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Digenesis is a very common yet complex chemical and physical alteration process that affects rocks 

throughout the geological time. Diagenetic processes may include dissolution of rocks, precipitation of 

cements within the rocks, and compaction and fracturing because of an applied stress.  There are differ-

ent parameters involved in any diagenetic process, including the chemistry of reactive fluids within the 

pore system, burial depth, and temperatures at which alteration occurs. Therefore, detailed study of 

rocks diagenesis can provide a geological record of different processes that helped reshaping an area or 

a basin in the context of the, climatic, burial and tectonic evolution of that area or basin. In this article, I 

would like to focus on diagenesis in sedimentary rocks, particularly the carbonate rocks that I have 

worked on extensively for the last 10 years. 

In sedimentary rocks, which are the main reservoirs of the most important fluid for the creatures on 

Earth (i.e. the water of course), diagenesis plays a very important role in modifying the rocks ’ properties; 

how porous and well connected (via dissolution and fracturing) or tight and poorly connected (via ce-

mentation and compaction) these rocks are to allow good storage, mobility, and discharge of water from 

them. In petroleum industry, the role of diagenesis in sedimentary rocks is equally important, because it 

can also contribute to the generation (via compaction of the rocks containing organic matter) and distri-

bution (via fracturing and faulting of rocks) of other commercially important fluids and these are the oil 

and the gas. In mining industry, the diagenesis of the sedimentary rocks can also generate some prod-

ucts that are of a very high commercial value in the market. Examples of these products are gypsum, 

barite, and travertine.  

What makes digenetic products very interesting is that they can be seen at many scales; some of them 

can be seen from a distance of 100s of meters; while others can only be seen under the microscope. 

While working on diagenesis of carbonate rocks, I enjoyed looking, capturing, and documenting many, 

beautifully looking diagenetic products that never stopped surprising me how different elements can be 

linked to each other to tell you an interesting piece of the Earth evolving story. Therefore, I thought of 

sharing some pictures that illustrate some of the wonders of diagenesis with you. I hope you will enjoy 

them. 

 

 

Aisha Al Hajri  

A very active Geologist and the Vice President of GSO. She is working as a carbonate Geologist at 

Petroleum Development Oman. Her field of interest is carbonate sedimentology, stratigraphy, dia-

genesis, and petrophysical evaluation 



 25 

Microscopic photograph showing Bacinella algae-rich 
boundstone with strong calcite cement (white crystals 
inside the algae chambers). Subsurface sample from the 
Shuaiba Formation. 

Hexagonal shaped calcite cement deposited 
in Tertiary carbonates, Masirah Island. 

Hydrothermal dolomitization (brown areas) confined to 
area around fracture, Khufai Formation (Snake Gorge, 
Wadi Bimah) 

Big circular sinkhole generated by disso-
lution  and collapse of carbonate rocks , 
Taiq Cave Salalah 

Vugs within Tertiary carbonates gener-
ated after dissolution by meteoric water, 
Abandoned mine in Salalah 
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In one of Oman outcrops of the Cambrian Miqrat Formation in the Al Huqf area, 
eye-catching syneresis cracks can be observed and examined. Such structures 
form due to shrinkage that form under water in clayey sediments. The curved ta-
pering nature of the cracks and the color contrast in the outcrops makes it a text-
book example.  
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